
Applied Probability Trust (12 February 2016)
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Abstract

In this paper we characterize the mean and the distribution of the first exit

time of a Lévy flight from a bounded region in N-dimensional spaces. We

characterize tight upper and lower bounds on the tail distribution of the first

exit time, and provide the exact asymptotics of the mean first exit time for a

given range of step-length distribution parameters.
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1. Model description and problem statement

1.1. Lévy flight

A Lévy flight is a class of random walks that is characterized by a heavy-tailed

step-length distribution. Let {Yn}n∈N be a sequence of random vectors that denote

the position of an object that moves according to a Lévy flight process in R
N , N ≥ 1.

We assume that the random walk starts at the origin. Then, for the one-dimensional
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case, Yn can be written as

Yn =

n
∑

k=1

Xk ∈ R. (1.1)

In (1.1), Xk denotes the kth signed step-length, and is independent and identically

distributed (i.i.d.) across k according to an α-stable distribution. Let X be the generic

random variable for Xk. Then the characteristic function of X , defined as ϕX(t) :=

E[eitX ], is determined by the parameter tuple (α, β, γ, δ) as

ϕX(t) =











exp
(

−γα|t|α
[

1− iβ(tan πα
2 )(sgn t)

]

+ iδt
)

, α 6= 1,

exp
(

−γ|t|
[

1 + iβ 2
π (sgn t) log |t|

]

+ iδt
)

, α = 1.

(1.2)

In (1.2), the stability index α ∈ (0, 2] and the skewness parameter β ∈ [−1, 1] determine

the form of the distribution in terms of the tail asymptotics and the skewness, and γ > 0

and δ ∈ R are parameters for the scale and the shift, respectively [13].

For the N -dimensional (N ≥ 2) case, Yn can be written using hyperspherical

coordinates as

Yn =

n
∑

k=1

|Xk|Λ(θk) ∈ R
N . (1.3)

In (1.3), |Xk| denotes the absolute value of the kth signed step-length Xk and corre-

sponds to the radial coordinate. Then θk = (θk,m)m=1,...,N−1 is an (N − 1)-tuple of

angular coordinates, and Λ(θk) denotes the unit-length direction vector associated with

it. In our model, the angular coordinates (θk,m)m=1,...,N−1 are chosen independently

of the step-length and each other, and uniformly at random from the interval [0, π) for

m = 1, . . . , N − 2, and [0, 2π) for m = N − 1, which results in an isotropic random

walk. The unit-length direction vector Λ(·) is defined for ω = (ω1, . . . , ωN−1) ∈ Ω :=

[0, π)N−2 × [0, 2π) by Λ(ω) = (Λ1(ω), . . . ,ΛN (ω)), where

Λ1(ω) = cos(ω1),

Λ2(ω) = sin(ω1) cos(ω2),

Λ3(ω) = sin(ω1) sin(ω2) cos(ω3),

...

ΛN−1(ω) = sin(ω1) . . . sin(ωN−2) cos(ωN−1),

ΛN(ω) = sin(ω1) . . . sin(ωN−2) sin(ωN−1).
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In this paper we consider α-stable distributions with β = δ = 0 in which case

the characteristic function reduces to ϕX(t) = e−γα|t|α . This results in a symmetric

distribution for the signed step-length and a symmetric Lévy flight in R. Furthermore,

we focus on α ∈ (0, 2), since for α = 2 the resulting α-stable distribution is Gaussian

and no longer heavy-tailed (i.e. the resulting random walk is not a Lévy flight). For

this set of parameters, the tail of the α-stable distribution asymptotically behaves as

P(X > x) = P(X < −x) ∼ Γ(α)

π
sin

(πα

2

)

γαx−α. (1.4)

Here, Γ(·) is the gamma function, and for any two functions g, h : R → R, we write

g(x) ∼ h(x) to denote limx→∞ g(x)/h(x) = 1. Throughout this paper, we adopt the

following notation to indicate asymptotic behavior:

g(x) = O(h(x)) if lim sup
x→∞

g(x)

h(x)
< ∞,

g(x) = Ω(h(x)) if h(x) = O(g(x)),

g(x) = Θ(h(x)) if g(x) = O(h(x)), and g(x) = Ω(h(x)).

1.2. First exit time from a bounded region

The quantity of interest in this paper is the first exit time of a Lévy flight from

a bounded region, in particular a closed N -ball of radius R. We provide the formal

definition of the first exit time in Definition 1.1.

Definition 1.1. For a given R > 0, the first exit time τR is defined as

τR := inf{n ∈ N : |Yn| > R},

where |Yn| denotes the Euclidean norm of Yn.

Since Xk is not identically 0 for any k ∈ N, τR is a proper random variable, i.e.

lim
t→∞

P(τR > t) = 0.

In this paper we focus on characterizing the behavior of the distribution and the mean

of τR as a function of R.

Note that the first exit time is sometimes also referred to as the first passage time

in the literature. In our work we distinguish between them as follows. The first
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exit time is concerned with a bounded region, and the first passage time is concerned

with a semi-infinite interval in one-dimension. We define the first passage time as

ν = νx := inf{n ∈ N : Yn > x}. A well-established result on the first passage time

is the Sparre Andersen theorem which states that for any discrete-time random walk

with a continuous and symmetric step-length distribution, the first passage time density

fν(t) scales asymptotically as t−3/2 [1]. In this paper, we use FW (w) := P(W ≤ w) to

denote the cumulative distribution function (CDF) of a random variable W. If it exists

we denote the probability density function (PDF) of W by fW (w).

Pruitt [9] derived upper and lower bounds on the distribution and the mean of the

first exit time for any random walk in R
N . For one-dimensional Lévy flights, the average

first exit time from a bounded interval has been studied by Buldyrev et al. [2,3]. A later

study by Dybiec et al. [5], however, pointed out that non-local boundary conditions

have to be considered due to the heavy-tailed step-lengths of a Lévy flight, and hence

the analytical results in [2, 3] are correct only for α = 2. Dybiec et al. [5] provided

a numerical study to verify their results, and the analytical solution is left open. For

two-dimensional Lévy flights, there is a very recent study by Vahabi et al. [10], who

provided numerical results on the mean first exit time. For general N -dimensional

Lévy flights, there are no analytical results for either the distribution or moments of

the first exit time from a bounded region.

An analytical solution for the distribution and the mean of the first exit time of

a Lévy flight in R
N is known for the diffusion limit, i.e. α-stable Lévy motion [11].

In one-dimensional space, Katzav and Adda-Bedia [8] and Zoia et al. [12] derived the

distribution and the moments of the first exit time. In general N -dimensional spaces,

Getoor [7] established exact expressions for the first and second moments of the first

exit time. Recently, Chen et al. [4] derived two-sided estimates for the heat kernel of

a Dirichlet fractional Laplacian in R
N . From [4, Theorem 1.1(ii)] we can deduce that

the tail distribution of the first exit time from an N -ball has exponential upper and

lower bounds.

In this paper we analyze the distribution and the mean of the first exit time of Lévy

flights in R
N . Our approach is to formulate the tail distribution of the first exit time

in a recursive manner as P(τR > n + 1) = anP(τR > n) and derive bounds on the

factor an uniformly over all n ∈ N. Based on this approach, we prove that the tail
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distribution is bounded above and below by exponential functions. The efficacy of our

bounds is illustrated by the fact that they translate into an order-wise tight bound on

the mean first exit time for the stability index α ∈ (0, 1).

2. Analytic results on the first exit time

In this section we state and prove our main results on the first exit time τR of a

Lévy flight from an N -ball of radius R. We begin by providing upper and lower bounds

on the tail probability of τR in Theorem 2.1. As a consequence of Theorem 2.1, we

next analyze the asymptotics of the mean first exit time E[τR] in Corollary 2.1 as the

radius R increases. Finally, we establish the dependence of the first exit time on the

scale parameter γ of the α-stable distribution in Proposition 2.1.

Theorem 2.1. For a Lévy flight in R
N , the first exit time from a ball of radius R is

exponentially bounded, i.e. there exist 0 < lR ≤ uR < 1 such that

(lR)
n ≤ P(τR > n) ≤ (uR)

n for all n ∈ N, (2.1)

where lR and uR are given as

lR =
1

zR

∫ zR

0

F|X|(x) dx, uR = F|X|(R), (2.2)

where zR := 2R for N = 1 and zR := R for N ≥ 2.

Remark 2.1. In [9], Pruitt derived bounds on the distribution of the extreme value

Mn = maxi≤n |Si| for any random walk {Sn}n∈N in R
N . When we apply [9] to a Lévy

flight, we obtain the following bounds:

1− νRn ≤ P(τR > n) ≤ ζR
n

for all n ∈ N, (2.3)

where νR and ζR are constants that scale like Θ(R−α) and Θ(Rα), respectively. Since

our bounds in Theorem 2.1 are exponential functions of n whereas the bounds in (2.3)

are polynomial functions, there exists n̂ ∈ N such that

1− νRn ≤ (lR)
n ≤ P(τR > n) ≤ (uR)

n ≤ ζR
n

for all n ≥ n̂.

That is, after a certain point n ≥ n̂, our bounds in Theorem 2.1 become tighter than

the bounds obtained by applying Pruitt’s result to a Lévy flight.
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An analogous result to our Theorem 2.1 can be obtained for an α-stable Lévy motion

in R
N . From [4, Theorem 1.1(ii)], we can deduce that the tail distribution of the first

exit time from an N -ball has exponential upper and lower bounds as

η1e
−λt ≤ P(τR > t) ≤ η2e

−λt,

where λ is the smallest eigenvalue of the Dirichlet fractional Laplacian, and η1 and η2

are positive constants.

To prove Theorem 2.1, we need three lemmas. Lemma 2.1 is concerned with the

distribution of the absolute value of an α-stable distributed random variable X , and is

a direct consequence of the bell-shaped nature of α-stable distributions [6]. The proof

of Lemma 2.1 is given in Appendix A.

Lemma 2.1. The CDF F|X|(·) is infinitely differentiable on its domain [0,∞). Hence,

the PDF of |X | exists. Moreover, the PDF is monotone and satisfies f|X|(xl) ≥
f|X|(xu) for 0 ≤ xl ≤ xu.

In Lemma 2.2 we explore the distribution of the nth position of a Lévy flight {Yn}n∈N

conditioned on the event that all positions up to time n lie inside the ball of radius R.

In particular, we examine the existence, the continuity, and the monotonicity of the

conditional density function of |Yn|. The proof of Lemma 2.2 is given in Appendix B.

Lemma 2.2. The conditional density function f|Yn|(y | τR > n) exists for all n ∈ N,

and is continuous over its domain [0, R]. In addition, for 0 ≤ yl ≤ yu ≤ R, we have

f|Yn|(yl | τR > n) ≥ f|Yn|(yu | τR > n). (2.4)

In Lemma 2.3 we investigate the probability of exiting the ball of radius R at the

next step as a function of the current position of the Lévy flight. We show that the

Lévy flight is less likely to exit the ball when its current position is closer to the center

of the ball. The proof of Lemma 2.3 is given in Appendix C.

Lemma 2.3. Let G : [0, R] → [0, 1] be defined as G(y) := P(|Yn+1| ≤ R | |Yn| = y).

Then, for the one-dimensional Lévy flight, we have

G(y) =
1

2
F|X|(R− y) +

1

2
F|X|(R + y), (2.5)
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and for the N -dimensional (N ≥ 2) Lévy flight, we have

G(y) ≥ F|X|(R − y). (2.6)

Regardless of the dimension, for any Lévy flight, we have for 0 ≤ yl ≤ yu ≤ R,

G(yl) ≥ G(yu). (2.7)

Proof of Theorem 2.1. We complete the proof in two steps. First, we show that for

any n ∈ N, the distribution P(τR > n) can be written recursively with the initial value

P(τR > 1) = P(|Y1| ≤ R) = F|X|(R) as

P(τR > n+ 1) = P(τR > n)

∫ R

0

G(y)f|Yn|(y | τR > n) dy, (2.8)

where G(·) is defined in Lemma 2.3, and the existence of f|Yn|(· | τR > n) has already

been shown in Lemma 2.2. Second, we show that the integral in (2.8) is bounded by

lR ≤
∫ R

0

G(y)f|Yn|(y | τR > n) dy ≤ uR for all n ∈ N. (2.9)

Combining (2.8) and (2.9) yields Theorem 2.1.

Note that {τR > n} = {|Yk| ≤ R, k = 1, 2, . . . , n}. Hence, by conditioning on the

event {τR > n} we can rewrite the probability P(τR > n+ 1) as

P(τR > n+ 1) = P(τR > n+ 1 | τR > n)P(τR > n)

= P(|Yk| ≤ R, k = 1, 2, . . . , n+ 1 | |Yk| ≤ R, k = 1, 2, . . . , n)P(τR > n)

= P(|Yn+1| ≤ R | τR > n)P(τR > n). (2.10)

We focus on the probability P(|Yn+1| ≤ R | τR > n) in (2.10) for the N -dimensional

(N ≥ 2) case, and omit the analysis for the one-dimensional case. For y ∈ [0, R]

and ω ∈ Ω, the joint conditional density function f|Yn|,∠(Yn)(y,ω | τR > n) exists by

Lemma 2.2, and given the isotropic nature of the Lévy flight, it can be written as

f|Yn|,∠(Yn)(y,ω | τR > n) =
1

2πN−1
f|Yn|(y | τR > n). (2.11)

Thus, we can rewrite P(|Yn+1| ≤ R | τR > n) by conditioning on Yn as

P(|Yn+1| ≤ R | τR > n)

=

∫ R

0

∫

Ω

P(|Yn+1| ≤ R |Yn = yΛ(ω), τR > n)f|Yn|,∠(Yn)(y,ω | τR > n) dω dy. (2.12)



8 Yoora Kim, Irem Koprulu, and Ness B. Shroff

The probability inside the integral in (2.12) reduces to

P(|Yn+1| ≤ R |Yn = yΛ(ω), τR > n) = P(|Yn+1| ≤ R |Yn = yΛ(ω))

= P(|Yn+1| ≤ R | |Yn| = y), (2.13)

where the first and the second equalities follow from the Markov property and the

isotropy of the Lévy flight, respectively. Substituting (2.11) and (2.13) into (2.12), we

have

P(|Yn+1| ≤ R | τR > n) =

∫ R

0

∫

Ω

P(|Yn+1| ≤ R | |Yn| = y)
1

2πN−1
f|Yn|(y | τR > n) dω dy

=

∫ R

0

P(|Yn+1| ≤ R | |Yn| = y)f|Yn|(y | τR > n) dy

=

∫ R

0

G(y)f|Yn|(y | τR > n) dy. (2.14)

Thus, combining (2.10) and (2.14), we obtain the recursion formula (2.8).

We will next prove the upper bound in (2.9). From (2.7) in Lemma 2.3, we have

∫ R

0

G(y)f|Yn|(y | τR > n) dy ≤ G(0)

∫ R

0

f|Yn|(y | τR > n) dy = G(0),

and G(0) := P(|Yn+1| ≤ R | |Yn| = 0) = P(|Xn+1| ≤ R) = F|X|(R). This gives the

upper bound uR = F|X|(R) in (2.9).

Finally, we prove the lower bound in (2.9). By (2.4) in Lemma 2.2, we have

Rf|Yn|(R | τR > n) ≤
∫ R

0

f|Yn|(y | τR > n) dy ≤ Rf|Yn|(0 | τR > n).

Since
∫ R

0 f|Yn|(y | τR > n) dy = 1, we have

f|Yn|(R | τR > n) ≤ 1

R
≤ f|Yn|(0 | τR > n).

In addition, since f|Yn|(· | τR > n) is a continuous function (by Lemma 2.2), we can

apply the intermediate value theorem to show the existence of ŷ = ŷn ∈ [0, R] such

that f|Yn|(ŷ | τR > n) = 1/R. In the following, we will show that the integral in (2.9)

is bounded below by 1/R
∫ R

0
G(y) dy by computing the difference over two separate

intervals of integration [0, ŷ] and (ŷ, R]:

∫ R

0

G(y)f|Yn|(y | τR > n) dy − 1

R

∫ R

0

G(y) dy

=

∫ ŷ

0

G(y)

(

f|Yn|(y | τR > n)− 1

R

)

dy +

∫ R

ŷ

G(y)

(

f|Yn|(y | τR > n)− 1

R

)

dy. (2.15)
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For 0 ≤ y ≤ ŷ, we have f|Yn|(y | τR > n) ≥ f|Yn|(ŷ | τR > n) = 1/R by (2.4) in

Lemma 2.2. Hence, the first integral in the right-hand side of (2.15) is bounded by

∫ ŷ

0

G(y)

(

f|Yn|(y | τR > n)− 1

R

)

dy ≥ inf
0≤y≤ŷ

{G(y)}
∫ ŷ

0

(

f|Yn|(y | τR > n)− 1

R

)

dy

= G(ŷ)

∫ ŷ

0

(

f|Yn|(y | τR > n)− 1

R

)

dy, (2.16)

where we have used inf0≤y≤ŷ{G(y)} = G(ŷ) by (2.7) in Lemma 2.3. Similarly, the

second integral in the right-hand side of (2.15) is bounded by

∫ R

ŷ

G(y)

(

f|Yn|(y | τR > n)− 1

R

)

dy ≥ sup
ŷ≤y≤R

{G(y)}
∫ R

ŷ

(

f|Yn|(y | τR > n)− 1

R

)

dy

= G(ŷ)

∫ R

ŷ

(

f|Yn|(y | τR > n)− 1

R

)

dy. (2.17)

Combining (2.15), (2.16), and (2.17), we have

∫ R

0

G(y)f|Yn|(y | τR > n) dy − 1

R

∫ R

0

G(y) dy ≥ G(ŷ)

∫ R

0

(

f|Yn|(y | τR > n)− 1

R

)

dy

= G(ŷ)(1 − 1)

= 0.

That is, the integral in (2.8) is bounded below by

∫ R

0

G(y)f|Yn|(y | τR > n) dy ≥ 1

R

∫ R

0

G(y) dy. (2.18)

Now we consider 1/R
∫ R

0 G(y) dy for the one-dimensional Lévy flight. By applying (2.5)

in Lemma 2.3 and change of variables, we have

1

R

∫ R

0

G(y) dy =
1

2R

∫ R

0

F|X|(R− y) dy +
1

2R

∫ R

0

F|X|(R+ y) dy

=
1

2R

∫ R

0

F|X|(y) dy +
1

2R

∫ 2R

R

F|X|(y) dy

=
1

2R

∫ 2R

0

F|X|(y) dy

= lR. (2.19)

Next, we consider 1/R
∫ R

0
G(y) dy for the N -dimensional (N ≥ 2) Lévy flight. Again,

by applying (2.6) in Lemma 2.3 and a change of variables, we have

1

R

∫ R

0

G(y) dy ≥ 1

R

∫ R

0

F|X|(R − y) dy =
1

R

∫ R

0

F|X|(y) dy = lR. (2.20)
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Combining (2.18), (2.19), and (2.20) yields the lower bound in (2.9). This completes

the proof of Theorem 2.1.

Using the result in Theorem 2.1, we can derive bounds on the mean first exit time

E[τR]. In Corollary 2.1, we show that the bounds we provide are asymptotically tight

as the radius R increases for the stability index α ∈ (0, 1).

Corollary 2.1. The mean first exit time of a Lévy flight in R
N is bounded by

1

1− lR
≤ E[τR] ≤

1

1− uR
,

where lR and uR are given in (2.2). From the bounds, the scaling behavior of E[τR]

with respect to R is given as

E[τR] = Θ(Rα) for α ∈ (0, 1). (2.21)

Note that our bounds are tight in an order sense for a Lévy flight in R
N with

α ∈ (0, 1). For α = 1, we have E[τR] = Ω(R/ log(R)) and E[τR] = O(R), while for

α ∈ (1, 2) we have E[τR] = Ω(R) and E[τR] = O(Rα). In [9, Theorem 1], Pruitt

establishes bounds on the mean first exit time for any random walk in R
N by using the

bounds on the distribution of the extreme value Mn that we mention in Remark 2.1.

When we apply [9, Theorem 1] to a Lévy flight in R
N , we obtain

E[τR] = Θ(Rα) for α ∈ (0, 2). (2.22)

Comparing (2.21) with (2.22), we arrive at the same order result for a restricted range

of α ∈ (0, 1), and the upper bound gives tight order for an entire range of α ∈ (0, 2).

Remark 2.2. A similar result can be found for an α-stable Lévy motion in R
N . In [7],

Getoor established an exact expression for the mean first exit time from an N -ball of

radius R. In particular, from [7, formula (A)] it follows that

E[τR] = K(α,N)(R2 − |x|2)α/2,

where K(α,N) is a constant that depends on α and the dimension N , and x is the

starting point of the α-stable Lévy motion. Hence, for any starting point x ∈ R
N such

that |x| < R, the mean first exit time scales as Θ(Rα) for α ∈ (0, 2). The work in [7]

focuses directly on the mean and does not provide bounds on the distribution as in

Theorem 2.1.
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Proof of Corollary 2.1. Since the random variable τR takes on only positive integer

values, the expectation E[τR] can be obtained by

E[τR] =
∞
∑

n=0

P(τR > n) ≤
∞
∑

n=0

(uR)
n =

1

1− uR
,

where the inequality follows from (2.1). Similarly, we have E[τR] ≥ (1− lR)
−1.

For Lévy flights in any dimension, as R goes to ∞, 1− uR behaves as

lim
R→∞

1− uR

R−α
= lim

R→∞

P(|X | > R)

R−α
=

2Γ(α)

π
sin

(πα

2

)

γα (6= 0, < ∞),

where the last equality follows from (1.4). Thus, we have E[τR] = O(Rα) for 0 < α < 2.

Now we analyze the scaling behavior of 1 − lR for the one-dimensional Lévy flight.

Note that 1− lR reduces to

1− lR =
1

2R

∫ 2R

0

1 dx− 1

2R

∫ 2R

0

F|X|(x) dx =
1

2R

∫ 2R

0

P(|X | > x) dx,

and limR→∞

∫ 2R

0
P(|X | > x) dx = E[|X |], which is infinite for 0 < α ≤ 1 and is finite

for 1 < α < 2. Suppose that 0 < α < 1. Then the behavior of 1− lR as R goes to ∞ is

lim
R→∞

1− lR
R−α

= lim
R→∞

1

2R1−α

∫ 2R

0

P(|X | > x) dx

= lim
R→∞

P(|X | > 2R)

(1 − α)R−α

=
2Γ(α)

(1 − α)π
sin

(πα

2

)(γ

2

)α

(6= 0, < ∞).

Here, L’Hópital’s rule is used in the second equality since both the numerator and the

denominator go to ∞. Therefore, we have E[τR] = Ω(Rα) for 0 < α < 1. Now suppose

that α = 1. Then, similarly to the previous case, we have

lim
R→∞

1− lR
R−1 logR

= lim
R→∞

1

2 logR

∫ 2R

0

P(|X | > x) dx

= lim
R→∞

P(|X | > 2R)

R−1

=
γ

π
(6= 0, < ∞).

Therefore, we have E[τR] = Ω(R/ logR) for α = 1. Finally, suppose that 1 < α < 2.

Then, similarly to the previous case again, we have

lim
R→∞

1− lR
R−1

= lim
R→∞

1

2

∫ 2R

0

P(|X | > x) dx =
1

2
E[|X |] (6= 0, < ∞).
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Therefore, we have E[τR] = Ω(R) for 1 < α < 2. The same result follows for the

N -dimensional (N ≥ 2) Lévy flight by changing the upper boundary of the integral

from 2R to R. This completes the proof of Corollary 2.1.

Finally, we establish the dependence of the first exit time on the scale parameter γ

of the α-stable distribution. Proposition 2.1 shows that the order-wise asymptotic

behavior of the first exit time of the one-dimensional Lévy flight is determined by the

stability index α. Hence, it suffices to consider step-length distributions with unit-scale

parameter γ = 1 when characterizing the asymptotics of the first exit time τR as the

radius R increases.

Proposition 2.1. Let τ(R,α,γ) be the first exit time of a Lévy flight with step-length

parameters α, γ and ball of radius R. Then for the one-dimensional Lévy flight, we

have

τ(R,α,γ)
D
= τ(R/γ,α,1),

where
D
= denotes equal in distribution.

Proof. In this proof we add the subscript (α, γ) to the random variablesX and Yn as

X(α,γ) and Y(n,α,γ) in order to explicitly denote the associated step-length parameters.

Note that the characteristic functions of γX(α,1) and X(α,γ) are identical, i.e.

ϕγX(α,1)
(t) = E[eitγX(α,1) ] = E[ei(γt)X(α,1) ] = ϕX(α,1)

(γt) = exp(−|γt|α) = ϕX(α,γ)
(t),

where the last two equalities follow from (1.2). Since the characteristic function

uniquely determines the distribution of a random variable, we have γX(α,1)
D
= X(α,γ).

In addition, it is known that Y(n,α,γ)
D
= n1/αX(α,γ) for n ∈ N [13]. Hence, we obtain

Y(n,α,γ)
D
= n1/α(γX(α,1)) = γ(n1/αX(α,1))

D
= γY(n,α,1),

i.e. Y(n,α,γ)
D
= γY(n,α,1). Therefore, for each n ∈ N, we have

P(τ(R,α,γ) > n) = P(|Y(k,α,γ)| ≤ R, k = 1, 2, . . . , n)

= P(γ|Y(k,α,1)| ≤ R, k = 1, 2, . . . , n)

= P(τ(R/γ,α,1) > n). (2.23)

Since (2.23) holds for any n ∈ N, we have τ(R,α,γ)
D
= τ(R/γ,α,1).
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Appendix A. Proof of Lemma 2.1

The CDF FX(·) is infinitely differentiable on its domain (−∞,∞), and the PDF

fX(·) satisfies fX(|xl|) ≥ fX(|xu|) for |xl| ≤ |xu| [6]. Since F|X|(x) = 2FX(x) − 1 and

f|X|(x) = 2fX(x) for x ≥ 0, the result follows.

Appendix B. Proof of Lemma 2.2

We provide the proof for the N -dimensional (N ≥ 2) case by induction on n. The

proof for the one-dimensional case follows from similar but simpler arguments.

Suppose n = 1. Since |Y1| = |X1| and {τR > 1} = {|X1| ≤ R}, we have

f|Y1|(y | τR > 1) = f|X1|(y | |X1| ≤ R) = c1f|X|(y),

where c1 := (P(|X | ≤ R))−1. Hence, by Lemma 2.1, the conditional density function

f|Y1|(· | τR > 1) is continuous, and satisfies for 0 ≤ yl ≤ yu ≤ R,

f|Y1|(yl | τR > 1) = c1f|X|(yl) ≥ c1f|X|(yu) = f|Y1|(yu | τR > 1).

This proves Lemma 2.2 for n = 1.

Suppose n ∈ N. Assume that

• (A1) f|Yn|(y | τR > n) exists for 0 ≤ y ≤ R;

• (A2) f|Yn|(y | τR > n) is continuous over its domain [0, R];

• (A3) for 0 ≤ yl ≤ yu ≤ R, f|Yn|(yl | τR > n) ≥ f|Yn|(yu | τR > n).

Under these assumptions, we will prove that Lemma 2.2 holds for n+1. We first show

the existence of the conditional density function f|Yn+1|(y | τR > n+ 1) for 0 ≤ y ≤ R.

Let BR = {x ∈ R
N : |x| ≤ R}. For a vector x ∈ R

N , let xi denote the ith component of

x. For any two vectors x,y ∈ R
N , we write x ≤ y to indicate xi ≤ yi for i = 1, . . . , N .

Then, for y ∈ BR, we have

P(Yn+1 ≤ y | τR > n+ 1) =
1

P(τR > n+ 1)
P(Yn+1 ≤ y, τR > n+ 1)

=
1

P(τR > n+ 1)
P(Yn+1 ∈ S(y), τR > n)

= cn+1P(Yn+1 ∈ S(y) | τR > n), (B.1)
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where S(y) := {x ∈ BR : x ≤ y} and cn+1 := P(τR > n)/P(τR > n + 1). Here, the

second equality is obtained in a similar manner as in (2.10). Based on assumption

(A1), we can write the probability P(Yn+1 ∈ S(y) | τR > n) by conditioning on Yn as

P(Yn+1 ∈ S(y) | τR > n) =

∫

BR

P(Yn+1 ∈ S(y) |Yn = x, τR > n)fYn
(x | τR > n) dx

=

∫

BR

P(Yn+1 ∈ S(y) |Yn = x)fYn
(x | τR > n) dx

=

∫

BR

∫

S(y)

1

2πN−1
f|X|(|x− s|) ds fYn

(x | τR > n) dx

=
1

2πN−1

∫

S(y)

∫

BR

f|X|(|x− s|)fYn
(x | τR > n) dx ds

=
1

2πN−1

∫

S(y)

E
[

f|X|(|Yn − s|) | τR > n
]

ds, (B.2)

where the second equality is obtained by the Markov nature of {Yn}n∈N, and Tonelli’s

theorem is applied in the fourth equality given the nonnegativity of the density func-

tions f|X|(·) and fYn
(·|τR > n). To simplify notation, we define

H(s) =
1

2πN−1
E
[

f|X|(|Yn − s|) | τR > n
]

, s ∈ S(y). (B.3)

Also, in order to differentiate (B.2) with respect to y1, . . . , yN sequentially, we introduce

V(a) = {x ∈ R
k : x ≤ a}, a ∈ R

k,

B(b) = {x ∈ R
k : |x| ≤

√

R2 − |b|2}, b ∈ R
N−k,

where k = 1, . . . , N − 1. Then, we have

∂

∂y1
P(Yn+1∈ S(y) | τR > n) =

∫

B(y1)∩V(y2,...,yN )

H(y1, s2, . . . , sN ) d(s2, . . . , sN ). (B.4)

In deriving (B.4), we first decompose S(y) as

S(y) =
{

s ∈ R
N : |s1| ≤ R, |(s2, . . . , sN )| ≤

√

R2 − (s1)2
}

⋂

{

s ∈ R
N : s1 ≤ y1, (s2, . . . , sN ) ≤ (y2, . . . , yN)

}

=
{

s ∈ R
N : s1 ∈ [−R, y1], (s2, . . . , sN ) ∈ B(s1) ∩ V(y2, . . . , yN )

}

. (B.5)

Next, we combine (B.2), (B.3), and (B.5) to obtain

P(Yn+1 ∈ S(y) | τR > n) =

∫ y1

−R

∫

B(s1)∩V(y2,...,yN )

H(s) d(s2, . . . , sN ) ds1. (B.6)
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Based on the continuity assumption (A2), we can apply the fundamental theorem of

calculus to find the derivative of (B.6) with respect to y1, which results in (B.4).

Using a similar approach as above, we have

∂2

∂(y2, y1)
P(Yn+1 ∈ S(y) | τR > n)

=
∂

∂y2

∫

B(y1)∩V(y2,...,yN )

H(y1, s2, . . . , sN) d(s2, . . . , sN )

=
∂

∂y2

∫ y2

−
√

R2−y2
1

∫

B(y1,s2)∩V(y3,...,yN)

H(y1, s2, . . . , sN ) d(s3, . . . , sN ) ds2

=

∫

B(y1,y2)∩V(y3,...,yN)

H(y1, y2, s3, . . . , sN ) d(s3, . . . , sN ).

Continuing this process, we finally obtain

∂N

∂(yN , . . . , y1)
P(Yn+1 ∈ S(y) | τR > n) = H(y).

Also, by the isotropy of the Lévy flight, we have

∂N

∂(yi1 , yi2 , . . . , yiN )
P(Yn+1 ∈ S(y) | τR > n) = H(y), (B.7)

for any permutation (i1, i2, . . . , iN ) of (1, 2, . . . , N). Hence, for a point y ∈ BR, the

density function fYn+1(y | τR > n+ 1) exists and is obtained from (B.1) and (B.7) by

fYn+1(y | τR > n+ 1) = cn+1H(y) =
cn+1

2πN−1
E
[

f|X|

(

|Yn − y|
) ∣

∣ τR > n
]

.

By the isotropy of the Lévy flight again, we have for 0 ≤ y ≤ R,

f|Yn+1|(y | τR > n+ 1) = 2πN−1fYn+1(ye1 | τR > n+ 1)

= cn+1E
[

f|X|

(

|Yn − ye1|
)
∣

∣ τR > n
]

, (B.8)

where e1 denotes the first standard basis vector in R
N , i.e. e1 = (1, 0, . . . , 0) ∈ R

N .

This proves the existence of the density function f|Yn+1|(· | τR > n+ 1).

We next prove the continuity of f|Yn+1|(· | τR > n + 1). To this end, we show that

f|Yn+1|(· | τR > n+ 1) is differentiable, and its derivative is given by

d

dy
f|Yn+1|(y | τR > n+1) = cn+1

∫

BR

(y − s1)f
′
|X|(|s− ye1|)fYn

(s | τR > n)

|s− ye1|
ds, (B.9)
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where f ′
|X|(x) := (d/dx)(f|X|(x)). From (B.8), we have

d

dy
f|Yn+1|(y | τR > n+ 1)

= lim
ǫ→0

f|Yn+1|(y + ǫ | τR > n+ 1)− f|Yn+1|(y | τR > n+ 1)

ǫ

= cn+1 lim
ǫ→0

∫

BR

f|X|(|s− (y + ǫ)e1|)− f|X|(|s− ye1|)
ǫ

fYn
(s | τR > n) ds. (B.10)

In this proof we assume that ǫ in (B.10) is positive, but we can prove the case ǫ < 0

similarly. For each fixed point s ∈ BR, the density f|X|(|s − ye1|) is an infinitely

differentiable function of y by Lemma 2.1, and, thus, by the mean value theorem, there

exists ȳ ∈ (y, y + ǫ) such that

f|X|(|s− (y + ǫ)e1|)− f|X|(|s− ye1|)
ǫ

= f ′
|X|(|s− ȳe1|)

ȳ − s1
|s− ȳe1|

. (B.11)

The term on the right-hand side of (B.11) is bounded by

∣

∣

∣

∣

f ′
|X|(|s− ȳe1|)

ȳ − s1
|s− ȳe1|

∣

∣

∣

∣

≤ sup
0≤x≤2R

|f ′
|X|(x)|

∣

∣

∣

∣

ȳ − s1
|(s1 − ȳ)e1|

∣

∣

∣

∣

= M,

where M := sup0≤x≤2R |f ′
|X|(x)| is finite since f ′

|X|(·) is continuous by Lemma 2.1.

Hence, the first term inside the integral in (B.10) is bounded for any s ∈ BR, y ∈ [0, R],

and ǫ > 0 by

∣

∣

∣

∣

f|X|(|s− (y + ǫ)e1|)− f|X|(|s− ye1|)
ǫ

∣

∣

∣

∣

≤ M. (B.12)

The second term inside the integral in (B.10) is bounded for any s ∈ BR by

fYn
(s | τR > n) =

1

2πN−1
f|Yn|(|s| | τR > n) ≤ 1

2πN−1
f|Yn|(0 | τR > n), (B.13)

where the inequality follows from assumption (A3). Given (B.12) and (B.13), we can

apply the dominated convergence theorem to (B.10) to obtain

lim
ǫ→0

f|Yn+1|(y + ǫ | τR > n+ 1)− f|Yn+1|(y | τR > n+ 1)

ǫ

= cn+1

∫

BR

lim
ǫ→0

f|X|(|s− (y + ǫ)e1|)− f|X|(|s− ye1|)
ǫ

fYn
(s | τR > n) ds

= cn+1

∫

BR

f ′
|X|(|s− ye1|)

y − s1
|s− ye1|

fYn
(s | τR > n) ds,

where the second equality follows from (B.11). This proves (B.9).
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Figure 1: Geometry in the proof of Lemma 2.2

Finally, we prove the monotonicity of f|Yn+1|(· | τR > n+1). Fix yl and yu such that

0 ≤ yl ≤ yu ≤ R. From (B.8), we have

f|Yn+1|(yl | τR > n+ 1)− f|Yn+1|(yu | τR > n+ 1)

= cn+1E
[

f|X|

(

|Yn − yle1|
)

− f|X|

(

|Yn − yue1|
) ∣

∣ τR > n
]

= cn+1

∫

BR

J(s)fYn
(s | τR > n) ds, (B.14)

where

J(s) := f|X|

(

|s− yle1|
)

− f|X|

(

|s− yue1|
)

. (B.15)

Given yl and yu, we partition the ball BR into three disjoint regions D1, D2, and D3 as

D1 :=

{

s ∈ BR : s1 ≥ yl + yu
2

}

,

D2 := {(yl + yu)e1 − s ∈ BR : s ∈ D1},

D3 := BR \ (D1 ∪D2);

see Figure 1 for a depiction ofD1, D2, and D3 in R
2. Note thatD2 is the mirror image of

D1 with respect to the point ((yl+yu)/2)e1, and D2∪D3 = {s ∈ BR : s1 ≤ (yl+yu)/2}.
Also, note that |s − yle1| ≤ |s − yue1| if and only if s1 ≤ (yl + yu)/2. Hence, by
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Lemma 2.1, J(s) ≤ 0 for s ∈ D1 and J(s) ≥ 0 for s ∈ D2 ∪D3, which yields

∫

D1

J(s)fYn
(s | τR > n) ds ≤ 0,

∫

D2

J(s)fYn
(s | τR > n) ds ≥ 0,

∫

D3

J(s)fYn
(s | τR > n) ds ≥ 0.

(B.16)

We will compare the first two integrals in (B.16). For each point s ∈ D1, we define

ŝ = (yl + yu)e1 − s

to simplify the notation. Then, we have |s−yle1| = |ŝ−yue1| and |s−yue1| = |ŝ−yle1|.
Accordingly, we have

J(s) = −J(ŝ) ≤ 0 for s ∈ D1. (B.17)

In addition, since |s| ≥ |ŝ| for s ∈ D1, we have f|Yn|(|s| | τR > n) ≤ f|Yn|(|ŝ| | τR > n)

by assumption (A3). Thus, we have

fYn
(s | τR > n) ≤ fYn

(ŝ | τR > n) for s ∈ D1. (B.18)

From (B.17) and (B.18), we have

∫

D1

J(s)fYn
(s | τR > n) ds ≥ −

∫

D1

J(ŝ)fYn
(ŝ | τR > n) ds

= −
∫

D1

J
(

(yl + yu)e1 − s
)

fYn

(

(yl + yu)e1 − s | τR > n
)

ds

= −
∫

D2

J(s̃)fYn
(s̃ | τR > n) ds̃,

where the second equality is obtained by the definition of D2. Hence, we have

∫

D1∪D2

J(s)fYn
(s | τR > n) ds ≥ 0. (B.19)

Combining (B.14), (B.16), and (B.19) shows the monotonicity of f|Yn+1|(· | τR > n+1).

This completes the proof of Lemma 2.2.
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Appendix C. Proof of Lemma 2.3

We prove the one-dimensional case first. Starting with the definition of G(·), we
have for any y ∈ [0, R] the following:

G(y) := P(|Yn+1| ≤ R | |Yn| = y)

= P(|Yn+1| ≤ R |Yn = y)

=
1

2
P(|Xn+1| ≤ R− y) +

1

2
P(|Xn+1| ≤ R+ y)

=
1

2
F|X|(R− y) +

1

2
F|X|(R+ y).

Here, the second equality follows from the symmetry of the Lévy flight {Yn}n∈N in

R. Since F|X|(·) is differentiable by Lemma 2.1, G(·) is also differentiable, and its

derivative satisfies

d

dy
G(y) = −1

2
f|X|(R− y) +

1

2
f|X|(R + y) ≤ 0,

where the inequality follows from Lemma 2.1. Hence, we have G(yl) ≥ G(yu) for any

yl and yu with 0 ≤ yl ≤ yu ≤ R. This proves Lemma 2.3 for the one-dimensional case.

We now prove the N -dimensional (N ≥ 2) case. By isotropy, G(y) is given by

G(y) := P(|Yn+1| ≤ R | |Yn| = y) = P(|Yn+1| ≤ R |Yn = ye1). (C.1)

By conditioning on θn+1 in (C.1), we have

G(y) =

∫

Ω

P(|Yn+1| ≤ R |Yn = ye1, θn+1 = ω)fθn+1(ω |Yn = ye1) dω

=

∫

Ω

P(|Yn + |Xn+1|Λ(θn+1)| ≤ R |Yn = ye1, θn+1 = ω)
1

2πN−1
dω

=
1

2πN−1

∫

Ω

P(|ye1 + |Xn+1|Λ(ω)| ≤ R) dω, (C.2)

where the last equality follows from the independence of Xn+1, θn+1, and Yn. By the

triangle inequality, we have |ye1 + |Xn+1|Λ(ω)| ≤ |ye1|+ ||Xn+1|Λ(ω)| = y + |Xn+1|,
which shows that the event {y+ |Xn+1| ≤ R} implies the event {|ye1+ |Xn+1|Λ(ω)| ≤
R}. Hence, we have P(|ye1 + |Xn+1|Λ(ω)| ≤ R) ≥ P(y + |Xn+1| ≤ R) = F|X|(R − y)

for any ω ∈ Ω. Therefore, from (C.2) we have G(y) ≥ F|X|(R− y).

To prove the monotonicity of G(·), we represent G(y) in (C.1) as

G(y) = P(Yn+1 ∈ BR |Yn = ye1) =

∫

BR

1

2πN−1
f|X|(|s− ye1|) ds.
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Hence, for fixed yl and yu, the difference G(yl)−G(yu) is given by

G(yl)−G(yu) =
1

2πN−1

∫

BR

[

f|X|(|s− yle1|)− f|X|(|s− yue1|)
]

ds. (C.3)

Note that the integrand in (C.3) becomes f|X|(|s−yle1|)−f|X|(|s−yue1|) = J(s), which

we have defined in (B.15) in the proof of Lemma 2.2. Following the same argument

from (B.15) through (B.19) but replacing fYn
(·|τR > n) with 1, we can readily obtain

∫

BR

J(s) ds =

∫

D1∪D2

J(s) ds+

∫

D3

J(s) ds =

∫

D3

J(s) ds ≥ 0. (C.4)

Combining (C.3) and (C.4) yields G(yl)−G(yu) ≥ 0. This completes the proof.
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